LBMP Carbon Impact (**LBMP**_C) Calculation and Transparency

This presentation was reposted on 11/16/2018. The revisions impact the calculations at slide 19, and in Appendix I. These, as well as other ministerial revisions are shown as noted below.

Ethan D. Avallone

SENIOR MARKET DESIGN SPECIALIST – ENERGY MARKET DESIGN

Reposted – Revisions shown in red font Integrating Public Policy Task Force (IPPTF)

October 29, 2018 Rensselaer NY

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

Agenda

- Definition and Purpose
- Background
- Marginal Resources
- Example No Congestion
- Example Single Transmission Constraint with Two Marginal Units
- Appendix I: Example Two Constraints with Three Marginal Units
- Appendix II: Draft LBMP_c Formulation

Definition and Purpose

- LBMP_c is an estimate of the impact of carbon pricing on LBMPs.
- This presentation will describe:
 - How the NYISO intends to calculate LBMP_c
 - How the NYISO will provide LBMP_c transparency to stakeholders

Definition and Purpose

- The LBMP_c is needed for the following reasons:
 - Allocate carbon credit to LSEs
 - Charge/credit imports/exports the LBMP_c, respectively.
 - Note that most internal generators are not charged the LBMP_c; instead, the majority of resources will be assigned a carbon charge reflective of their actual emissions.
 - Apply a carbon charge to applicable wholesale market suppliers with NYSERDA REC contracts*
 - Provide market transparency regarding LBMP_c

*For further information, please see "Carbon Pricing: Treatment of Existing REC Contracts," presented at the October 11, 2018 IPPTF meeting at the following link: <u>http://www.nyiso.com/public/webdocs/markets_operations/committees/bic_miwg_ipptf/meeting_materials/2018-10-</u> 11/20180924%20NY%20REC%20Resources.pdf

Background

- The NYISO straw proposal envisions including carbon pricing within the wholesale energy market using the existing offer structure.
 - The NYISO market software will <u>not</u> automatically calculate a carbon component of LBMP, since the carbon charge will be included with fuel and other relevant costs when bid into the current structure.
- The NYISO intends to develop an ex post calculation to estimate the LBMP carbon impact. This value is an estimate due to:
 - Uncertainty of marginal units' precise emissions rates
 - Under certain market conditions, it is difficult to identify the marginal unit(s) due to product trade-offs (Energy, spin, regulation), and time interval trade-offs involved in the NYISO's look-ahead when considering the next MW of supply.
- Identified marginal units and their expected emissions would be used to estimate the LBMP carbon impact.

Background

- The NYISO's carbon reference level for the share of the marginal resource bid(s) associated with their anticipated carbon charge will be used to calculate the LBMP Carbon Impact (LBMP_c).
 - If the marginal resource is subject to the Regional Greenhouse Gas Initiative ("RGGI"), then the net Social Cost of Carbon ("SCC") will be utilized to determine the carbon reference level for the resource.

╰┼┼╀╯╭┪

- Such resources will ultimately be charged the net SCC for emissions.
- If the marginal resource is <u>not</u> subject to RGGI, then the SCC will be utilized to determine the carbon reference level for the resource.
 - Such resources will ultimately be charged the SCC for emissions.
- If the marginal resource is carbon free or qualifies under the Clean Energy Standard ("CES"), then the NYISO will utilize a \$0.00 carbon reference level for the resource.
 - Such resources will ultimately <u>not</u> be charged for emissions.
- The NYISO will post a single LBMP_c for each zone and proxy bus.

Marginal Resources

- The marginal resource(s) and system constraint(s) determine the LBMP today.
 - Those marginal resources and system constraints will be used for the ex post $LBMP_c$ calculation.

Marginal Resources

- The NYISO will require adequate marginal resources to calculate LBMP_C.
 - In the event there are not enough marginal resources to calculate LBMP_c, e.g., when the demand curve is marginal, the NYISO is considering persisting the LBMP_c from the most recent interval where LBMP_c could be determined.
 - For example, if marginal resources had set the price in interval t, and only the reserve demand curve sets price in the next interval, t+1, then the NYISO would set the LBMP_c in interval t+1 equal to the LBMP_c in interval t.
- The NYISO is currently considering the impact of this approach, and is open to stakeholder feedback.
 DRAFT FOR DISCUSSION PURPOSES ONLY

Examples - Background

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

Examples - Background

The NYISO will use the power balance equation and

transmission constraint equations to determine $LBMP_{C}$ for

the zone j.*

power balance:
$$\sum_{i=1}^{M} (DF_i * P_i) = DF_j$$

transmission constraint $k \in NC$:
$$\sum_{i=1}^{M} (GF_{i,k} * P_i) = GF_{j,k}$$
$$LBMP_{c,j} = \sum_{i=1}^{M} CB_i * P_i$$

M = The set of Marginal Resources

NC = The set of binding transmission constraints

 $GF_{i,k}$ = Shift factor for resource i on constraint k (the Shift Factor measures the

increment of constraint flow for an incremental injection at resource i and a corresponding withdrawal at the Reference Bus)

 DF_i = The delivery factor for bus i to the system Reference Bus

 CB_i = The reference level estimated net carbon charge from the bid of each marginal resource

 P_i = Resource i energy injection

*The formulation for the calculation of LBMP is discussed in Market Administration and Control Area Services Tariff (MST) section 17.1 - LBMP Calculation

Example – No Congestion

Reposted - Revisions shown in this section in red font

DRAFT - FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

Example – No Congestion

1.05 P_1 = .95 \rightarrow Power balance equation set equal to the delivery factor for Zone 1

*Please see the definition of "Shift Factor" in the NYISO Market Administration and Control Area Services Tariff (MST) section 2.19 Definitions – S. **Please see the treatment of Delivery Factors throughout MST section 17.1 – LBMP Calculation

NEW YORK INDEPENDENT SYSTEM OPERATOR

Example - No Congestion

Example - No Congestion

$P_1 = 0.904$ Solve for P_1 (\$5*0.904)= \$4.52 LBMP_c for Zone 1

 The LBMP_c across zones will differ only due to losses in this example, as there is no congestion. The delivery factor for the zone reflects the losses.

Example – Single Transmission Constraint with Two Marginal Units

Reposted - Revisions shown in this section in red font

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

System Congestion

- One or more transmission constraint can develop, causing congestion.
 - At least two resources must be marginal if a transmission constraint develops, one on either side of the constraint.
 - It is possible that more than one resource can be margina on either side of the constraint.
 - This is because resources can have similar costs to relieve a constraint.
- A resource's Shift Factor, as developed by the market software, represents the percent effectiveness of this resource in resolving a constraint.*

*For a definition of Shift Factor, please see Market Administration and Control Area Services Tariff (MST) section 2.19 MST Definitions - S

Example – Single Transmission Constraint with Two Marginal Units

Resource	Estimated Net Carbon Charge	Shift Factor	Delivery Factor
Marginal Generator 1	\$5.00/MWh	.85	1.05
Marginal Generator 2	\$10.00/MWh	.60	1.10

Zone	Delivery Factor for the Zone	Zone Shift Factor on the Constraint
1	0.95	0.30

- To determine the LBMP_c of Zone 1 (continued):
 - Calculate the LBMP_c

 $1.05P_1 + 1.10P_2 = 0.95$.85P₁ + .60P₂ = 0.30 Power balance equation and transmission constraint equations for two unknowns

NEW YORK INDEPENDENT SYSTEM OPERATOR

Example – Single Transmission Constraint with Two Marginal Units

Resource		Estimated Net Carbon Charge		Shift Factor		Delivery Factor	
Marginal Generator 1		r 1	\$5.00/MWh		.85		1.05
Marginal Generator 2 \$10.0		\$10.00/MW	'n	.60		1.10	
	Zone	Deli for	very Factor r the Zone	Zor on 1	e Shift Factor the Constraint		
	1		0.95		0.30		

- To determine the LBMP_c of Zone 1 (continued):
 - Calculate the LBMP_c

 $1.05P_1 + 1.10P_2 = 0.95$

 $.85P_1 + .60P_2 = 0.30$

 $P_1 = -0.786$

 $P_2 = 1.614$

Power balance equation and transmission constraint equations for two unknowns

Solve for the two unknowns, P_1 and P_2

NEW YORK INDEPENDENT SYSTEM OPERATOR

Example – Single Transmission Constraint with Two Marginal Units

Reso	ource	Estimated Net Carb Charge	Estimated Net Carbon Charge		Delivery Factor
Marginal Generator 1		1 \$5.00/MWh	\$5.00/MWh		1.05
Marginal G	ienerator	2 \$10.00/MWh		.60	1.10
	Zone	Delivery Factor for the Zone	Zo	one Shift Factor on the Constraint	
	1	0.95		0.30	

- To determine the LBMP_c of Zone 1 (continued):
 - Calculate the LBMP_c

 $1.05P_1 + 1.10P_2 = 0.95$

 $.85P_1 + .60P_2 = 0.30$

 $P_1 = -0.786$

 $P_2 = 1.614$

Power balance equation and transmission constraint equations for two unknowns

Solve for the two unknowns, P_1 and P_2

(\$5*-0.786)+(\$10*1.614) = \$12.21 LBMP_c for Zone 1 - Solve for the zonal LBMP_c

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

Market Transparency of LBMP_C

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

LBMP_c Posting

- The NYISO is targeting the following post for LBMP_c; however, the ultimate implementation will depend on whether the posting is technologically possible and necessary for market information:
 - Compute and post the zonal LBMP_c for RTD and RTC intervals, as well as RTC and RTD look-ahead intervals, to provide information for transactions.

┶┷┵

- Use the binding RTD interval (nominally 5-minutes) to determine the carbon credit allocation, import/export settlements, REC resource settlements, and provide further market transparency.
- Post the zonal LBMP_c at a 5 minute granularity*
 - When the posting occurs will depend on the time required to calculate LBMP_c.
 - The NYISO is targeting posting as soon as possible after the completion of each market run.

*The NYISO intends to provide a posting granularity similar to the current real-time zonal LBMP postings: http://www.nyiso.com/public/markets_operations/market_data/pricing_data/index.jsp

Appendix I: Example – Two Constraints with Three Marginal Units

Reposted - Revisions shown in this section in red font

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

Zone	Delivery Factor for the	Carbon Impact to	Carbon Impact to
	Zone	Constraint Cost (\$)A*	Constraint Cost (\$)B
1	0.95		

Resource	Estimated Net Carbon Charge	Shift Factor Constraint A	Shift Factor Constraint B	Delivery Factor	Constraint
Marginal Generator 1	\$5.00/MWh	.85	0	1.05	Α
Marginal Generator 2	\$10.00/MWh	.60	0	1.10	Α
Marginal Generator 3	\$15.00/MWh	0	.75	1.20	В

$$.85P_1 + .60P_2 + 0P_3 = -1$$

$$0P_1 + 0P_2 + .75P_3 = 0$$

$$1.05P_1 + 1.10P_2 + 1.20P_3 = 0$$

Power balance equation and transmission constraint equations for three unknowns

*This is the carbon impact to Constraint Cost(\$) in the real-time limiting constraints posting at the following link:

http://www.nyiso.com/public/markets_operations/market_data/power_grid_data/index.jsp

Zana	Delivery Factor for the	Carbon Impact to	Carbon Impact to
Zone	Zone	Constraint Cost (\$)A	Constraint Cost (\$)B
1	0.95		

Resource	Estimated Net Carbon Charge	Shift Factor Constraint A	Shift Factor Constraint B	Delivery Factor	Constraint
Marginal Generator 1	\$5.00/MWh	.85	0	1.05	Α
Marginal Generator 2	\$10.00/MWh	.60	0	1.10	Α
Marginal Generator 3	\$15.00/MWh	0	.75	1.20	В

$$.85P_{1} + .60P_{2} + 0P_{3} = -1$$

$$0P_{1} + 0P_{2} + .75P_{3} = 0$$
Power balance equation and transmission constraint equations for three unknowns
$$1.05P_{1} + 1.10P_{2} + 1.20P_{3} = 0$$
Power balance equation and transmission constraint equations for three unknowns
$$P_{1} = -3.605$$

$$P_{2} = 3.442$$
Solve for the three unknowns, P₁, P₂, and P₃

$$P_{3} = 0$$

Zana	Delivery Factor for the	Carbon Impact to	Carbon Impact to
20116	Zone	Constraint Cost (\$)A	Constraint Cost (\$)B
1	0.95	16.39	

Resource	Estimated Net Carbon Charge	Shift Factor Constraint A	Shift Factor Constraint B	Delivery Factor	Constraint
Marginal Generator 1	\$5.00/MWh	.85	0	1.05	Α
Marginal Generator 2	\$10.00/MWh	.60	0	1.10	Α
Marginal Generator 3	\$15.00/MWh	0	.75	1.20	В

 $\begin{array}{c} .85P_{1} + .60P_{2} + 0P_{3} = -1 \\ 0P_{1} + 0P_{2} + .75P_{3} = 0 \\ 1.05P_{1} + 1.10P_{2} + 1.20P_{3} = 0 \end{array}$ Power balance equation and transmission constraint equations for three unknowns $\begin{array}{c} P_{1} = -3.605 \\ P_{2} = 3.442 \\ P_{3} = 0 \end{array}$ Solve for the three unknowns, P_{1}, P_{2}, and P_{3} \\ P_{3} = 0 \end{array} $(\$5^{*}-3.606) + (\$10^{*}3.442) + (\$15^{*}0) = 16.39$ Solve for the carbon impact on the Shadow Price of the Constraint A NEW YORK INDEPENDENT OF DISCUSSION PURPOSES ONLY $\begin{array}{c} P_{1} = -3.605 \\ P_{2} = 3.442 \\ P_{3} = 0 \end{array}$ $\begin{array}{c} P_{1} = -3.606 \\ P_{2} = 3.442 \\ P_{3} = 0 \end{array}$ $\begin{array}{c} P_{1} = -3.606 \\ P_{2} = 3.442 \\ P_{3} = 0 \end{array}$ $\begin{array}{c} P_{2} = -3.606 \\ P_{2} = -3.606 \\ P_{3} = 0 \end{array}$ $\begin{array}{c} P_{1} = -3.606 \\ P_{2} = -3.606 \\ P_{3} = 0 \end{array}$ $\begin{array}{c} P_{1} = -3.605 \\ P_{2} = -3.606 \\ P_{3} = 0 \\ P_{3} = 0 \end{array}$ $\begin{array}{c} P_{1} = -3.606 \\ P_{2} = -3.606 \\ P_{2} = -3.606 \\ P_{3} = 0 \\ P_{3} =$

25

Zana	Delivery Factor for the	Carbon Impact to	Carbon Impact to
	Zone	Constraint Cost (\$)A	Constraint Cost (\$)B
1	0.95	16.39	

Resource	Estimated Net Carbon Charge	Shift Factor Constraint A	Shift Factor Constraint B	Delivery Factor	Constraint
Marginal Generator 1	\$5.00/MWh	.85	0	1.05	Α
Marginal Generator 2	\$10.00/MWh	.60	0	1.10	Α
Marginal Generator 3	\$15.00/MWh	0	.75	1.20	В

$$.85P_1 + .60P_2 + 0P_3 = 0$$

$$0P_1 + 0P_2 + .75P_3 = -1$$

$$1.05P_1 + 1.10P_2 + 1.20P_3 = 0$$

Power balance equation and transmission constraint equations for three unknowns

Zone	Delivery Factor for the	Carbon Impact to	Carbon Impact to
	Zone	Constraint Cost (\$)A	Constraint Cost (\$)B
1	0.95	16.39	

Resource	Estimated Net Carbon Charge	Shift Factor Constraint A	Shift Factor Constraint B	Delivery Factor	Constraint
Marginal Generator 1	\$5.00/MWh	.85	0	1.05	Α
Marginal Generator 2	\$10.00/MWh	.60	0	1.10	Α
Marginal Generator 3	\$15.00/MWh	0	.75	1.20	В

$$.85P_{1} + .60P_{2} + 0P_{3} = 0$$

$$OP_{1} + 0P_{2} + .75P_{3} = -1$$

$$1.05P_{1} + 1.10P_{2} + 1.20P_{3} = 0$$
Power balance equation and transmission constraint equations for three unknowns
$$P_{1} = -3.147$$

$$P_{2} = 4.459$$

$$P_{3} = -1.333$$
Solve for the three unknowns, P_{1}, P_{2}, and P_{3}

Zone	Delivery Factor for the	Carbon Impact to	Carbon Impact to		
	Zone	Constraint Cost (\$)A	Constraint Cost (\$)B		
1	0.95	16.39	8.85		

Resource	Estimated Net Carbon Charge	Shift Factor Constraint A	Shift Factor Constraint B	Delivery Factor	Constraint
Marginal Generator 1	\$5.00/MWh	.85	0	1.05	Α
Marginal Generator 2	\$10.00/MWh	.60	0	1.10	А
Marginal Generator 3	\$15.00/MWh	0	.75	1.20	В

$$\begin{array}{c} .85P_{1} + .60P_{2} + 0P_{3} = 0 \\ 0P_{1} + 0P_{2} + .75P_{3} = -1 \\ 1.05P_{1} + 1.10P_{2} + 1.20P_{3} = 0 \end{array}$$
Power balance equation and transmission constraint equations for three unknowns
$$\begin{array}{c} P_{1} = -3.147 \\ P_{2} = 4.459 \\ P_{3} = -1.333 \end{array}$$

$$\begin{array}{c} Solve for the three unknowns, P_{1}, P_{2}, and P_{3} \\ P_{3} = -1.333 \end{array}$$

$$\begin{array}{c} Solve for Carbon impact on the Shadow Price of the Constraint B \\ Solve for Carbon impact on the Shadow Price of the Constraint B \\ \end{array}$$

$$\begin{array}{c} Solve for Carbon impact on the Shadow Price of the Constraint B \\ \end{array}$$

$$\begin{array}{c} Solve for Carbon impact on the Shadow Price of the Constraint B \\ \end{array}$$

	Zone	Delivery Factor for the Zone	Carl Cons	bon Impact to traint Cost (\$)A	Carbon Impact to Constraint Cost (\$)B		Zone Shift Factor Constraint A		Zone Shift Factor Constraint B		Carbon Impact to Congestion, Constraint A		Carbon Impact to Congestion, Constraint B
	1	0.95		16.39	8.85		0.20		0.70		3.27		6.19
Resource		Estimated Net Carbon Charge		Shift Facto Constraint	or A	- Shift Fact Constrain		Delivery Factor		Co	onstraint		
Marginal Generator 1 \$		\$5.00/M	5.00/MWh .85			0		1.05		A			
Marginal Generator 2		\$10.00/M	Wh .60			0		1.10			Α		
ſ	Marg	inal Generat	tor 3	\$15.00/M	Wh	0		.75		1.2	0		В

• To determine the LBMP_c of Zone 1:

	Zone	Delivery Factor for the Zone		Carbon Impact t Congestion, Constraint A	o Carbon Impact Congestion, Constraint B	to Carbon Impact to Energy	2
	1	0.95		3.27	6.19		
Resource	E C	Stimated Net arbon Charge	Shift Factor Constraint A		Shift Factor Constraint B	Delivery Factor	Constraint
Marginal Generator	1	\$5.00/MWh		.85	0	1.05	Α
Marginal Generator 2		\$10.00/MWh		.60	0	1.10	Α
Marginal Generator 3 \$15.00/MW		\$15.00/MWh		0	.75	1.20	В

$$.85P_1 + .60P_2 + 0P_3 = 0$$

$$0P_1 + 0P_2 + .75P_3 = 0$$

$$1.05P_1 + 1.10P_2 + 1.20P_3 = 1$$

Power balance equation and transmission constraint equations for three unknowns

	Zone	Delivery Factor for Zone	r the Carbon Impact to Congestion, Constraint A		o Carbon Impact Congestion, Constraint B	to Carbon Impact to Energy	
	1	0.95		3.27	6.19		
Resource	E C	Estimated Net Carbon Charge		hift Factor onstraint A	Shift Factor Constraint B	Delivery Factor	Constraint
Marginal Generator	1	\$5.00/MWh		.85	0	1.05	Α
Marginal Generator	2	\$10.00/MWh		.60	0	1.10	A
Marginal Generator 3		615.00/MWh		0	.75	1.20	В

$$.85P_{1} + .60P_{2} + 0P_{3} = 0$$

$$0P_{1} + 0P_{2} + .75P_{3} = 0$$
Power balance equation and transmission constraint equations for three unknowns
$$1.05P_{1} + 1.10P_{2} + 1.20P_{3} = 1$$
Power balance equation and transmission constraint equations for three unknowns
$$P_{1} = -1.967$$

$$P_{2} = 2.786$$

$$P_{3} = 0$$
Solve for the three unknowns, P_{1}, P_{2}, and P_{3}

	Zone Delivery Factor for t Zone		e Carbon Impact to Congestion, Constraint A	c Carbon Impact to Congestion, Constraint B	Carbon Impact to Energy				
	1	0.95	3.27	6.19	\$18.03				
Resource		Estimated Net Carbon Charge	Shift Factor Constraint A	Shift Factor Constraint B	Delivery Factor	Constraint			
Marginal Generato	Marginal Generator 1 \$5.00/MWh			0	1.05	Α			
Marginal Generator 2 \$10.00/MWh			.60	0	1.10	Α			
Marginal Generato	r 3	\$15.00/MWh	0	.75	1.20	В			
$.85P_{1} + .60P_{2}$ $0P_{1} + 0P_{2} + .7$ $1.05P_{1} + 1.10P_{1}$ $P_{1} = -1.967 - P_{2} = 2.786$ $P_{3} = 0 - P_{3} = 0 - P_{3} = 0$ $($5*-1.967) + P_{3} = 0$	Marginal Generator 3\$15.00/MWh0.751.20B.85P1 + .60P2 + 0P3 = 0OP1 + 0P2 + .75P3 = 0Power balance equation and transmission constraint equations for three $1.05P_1 + 1.10P_2 + 1.20P_3 = 1$ Power balance equation and transmission constraint equations for three $P_1 = -1.967$ $P_2 = 2.786$ Solve for the three unknowns, P_1 , P_2 , and P_3 $P_3 = 0$ $($5*-1.967) + ($10*2.786) + ($15*0) = 18.03 Solve for Carbon impact on energy								

DRAFT – FOR DISCUSSION PURPOSES ONLY

Example – Tw	<u>/0 T</u>	<u>ransmission</u>	Constrai	nts v	with T	hree	Mar	ginal Ur	<u>nits</u>		
-	Zone	Delivery Factor for the Zone	Carbon ImpactCarbonto Congestion,to CongConstraint AConst3.276.		on Impact ngestion, straint B	Carbon Impact to Energy		Carbon Imp to Losses	act ;		
	1	0.95			.19	\$18	.03	-0.90			
Resource		Estimated Net Carbon Charge	Shift Factor Constraint A		Shift F Consti	hift Factor onstraint B		ery Factor		Constraint	
Marginal Generator 1		\$5.00/MWh	.85		C	0		1.05		Α	
Marginal Generator 2		\$10.00/MWh	.60		0		1.10			А	
Marginal Generat	or 3	\$15.00/MWh	0		.75			1.20		В	

Determine LBMP_c of Zone 1, continued:

18.03* (0.95-1)=-0.90 Carbon impact to losses

Solve for Carbon impact on losses

18.03 + -0.90 - (3.27 + 6.19) = \$7.67 / MWh is the zonal LBMP_c

Appendix II: Draft LBMP_c Formulation

DRAFT - FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

Draft LBMP_c formulation

The NYISO posted a draft LBMP_c formulation with today's meeting materials.

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com

